Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Cell Rep ; 38(10): 110434, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1729611

RESUMEN

Type I interferons (IFN-I) are essential to establish antiviral innate immunity. Unanchored (or free) polyubiquitin (poly-Ub) has been shown to regulate IFN-I responses. However, few unanchored poly-Ub interactors are known. To identify factors regulated by unanchored poly-Ub in a physiological setting, we developed an approach to isolate unanchored poly-Ub from lung tissue. We identified the RNA helicase DHX16 as a potential pattern recognition receptor (PRR). Silencing of DHX16 in cells and in vivo diminished IFN-I responses against influenza virus. These effects extended to members of other virus families, including Zika and SARS-CoV-2. DHX16-dependent IFN-I production requires RIG-I and unanchored K48-poly-Ub synthesized by the E3-Ub ligase TRIM6. DHX16 recognizes a signal in influenza RNA segments that undergo splicing and requires its RNA helicase motif for direct, high-affinity interactions with specific viral RNAs. Our study establishes DHX16 as a PRR that partners with RIG-I for optimal activation of antiviral immunity requiring unanchored poly-Ub.


Asunto(s)
Proteína 58 DEAD Box , Interferón Tipo I , ARN Helicasas , ARN Viral , Receptores Inmunológicos , Infección por el Virus Zika , Virus Zika , COVID-19 , Proteína 58 DEAD Box/inmunología , Humanos , Inmunidad Innata , Interferón Tipo I/inmunología , ARN Helicasas/inmunología , Receptores Inmunológicos/inmunología , SARS-CoV-2 , Proteínas de Motivos Tripartitos , Virus Zika/genética , Infección por el Virus Zika/inmunología
2.
J Antimicrob Chemother ; 76(2): 413-417, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: covidwho-915872

RESUMEN

BACKGROUND: As the causative agent of COVID-19, SARS-CoV-2 is a pathogen of immense importance to global public health. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense compounds composed of a phosphorodiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide. PPMO require no delivery assistance to enter cells and are able to reduce expression of targeted RNA through sequence-specific steric blocking. METHODS: Five PPMO designed against sequences of genomic RNA in the SARS-CoV-2 5'-untranslated region and a negative control PPMO of random sequence were synthesized. Each PPMO was evaluated for its effect on the viability of uninfected cells and its inhibitory effect on the replication of SARS-CoV-2 in Vero-E6 cell cultures. Cell viability was evaluated with an ATP-based method using a 48 h PPMO treatment time. Viral growth was measured with quantitative RT-PCR and TCID50 infectivity assays from experiments where cells received a 5 h PPMO treatment time. RESULTS: PPMO designed to base-pair with sequence in the 5' terminal region or the leader transcription regulatory sequence region of SARS-CoV-2 genomic RNA were highly efficacious, reducing viral titres by up to 4-6 log10 in cell cultures at 48-72 h post-infection, in a non-toxic and dose-responsive manner. CONCLUSIONS: The data indicate that PPMO have the ability to potently and specifically suppress SARS-CoV-2 growth and are promising candidates for further preclinical development.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Péptidos de Penetración Celular/farmacología , Morfolinos/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Antivirales/química , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Chlorocebus aethiops , Efecto Citopatogénico Viral/efectos de los fármacos , Morfolinos/química , SARS-CoV-2/genética , Células Vero
3.
bioRxiv ; 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: covidwho-835244

RESUMEN

BACKGROUND: SARS-CoV-2 is the causative agent of COVID-19 and a pathogen of immense global public health importance. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense agents composed of a phosphordiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide. PPMO require no delivery assistance to enter cells and are able to reduce expression of targeted RNA through sequence-specific steric blocking. OBJECTIVES AND METHODS: Five PPMO designed against sequences of genomic RNA in the SARS-CoV-2 5'-untranslated region and a negative control PPMO of random sequence were synthesized. Each PPMO was evaluated for its effect on the viability of uninfected cells and its inhibitory effect on the replication of SARS-CoV-2 in Vero-E6 cell cultures. Cell viability was evaluated with an ATP-based method and viral growth was measured with quantitative RT-PCR and TCID 50 infectivity assays. RESULTS: PPMO designed to base-pair with sequence in the 5'-terminal region or the leader transcription regulatory sequence-region of SARS-CoV-2 genomic RNA were highly efficacious, reducing viral titers by up to 4-6 log10 in cell cultures at 48-72 hours post-infection, in a non-toxic and dose-responsive manner. CONCLUSION: The data indicate that PPMO have the ability to potently and specifically suppress SARS-CoV-2 growth and are promising candidates for further pre-clinical development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA